These are just sub-parts of `bayessurvreg3' function to make it more readable for the programmer.
bayessurvreg3.checkStore(store)bayessurvreg3.priorInit(prior, init, design, mcmc.par,
prior2, init2, design2, mcmc.par2, doubly)
bayessurvreg3.priorBeta(prior.beta, init, design)
bayessurvreg3.priorb(prior.b, init, design, mcmc.par)
bayessurvreg3.writeHeaders(dir, doubly, prior.init,
priorb.di, priorb2.di, store, design, design2,
version, mclass)
bayessurvreg3.priorinitNb(priorinit.Nb, init, init2,
design, design2, doubly)
bayessurvreg3.checkrho(rho, doubly)
store
of the
function bayessurvreg2
prior
of the
function bayessurvreg3
prior2
of the
function bayessurvreg3
init
of the
function bayessurvreg3
init2
of the
function bayessurvreg3
mcmc.par
of the
function bayessurvreg3
mcmc.par2
of the
function bayessurvreg3
bayessurvreg.design
related to either the onset time
if doubly censored observations or to the event time. Remark:
design$Y
containbayessurvreg.design
related to time-to-event
if doubly censored observations. Remark:
design2$Y
contains original times and NOT theprior.beta
or
prior.beta2
of the function bayessurvreg3
prior.b
or
prior.b2
of the function bayessurvreg3
init
or init2
of the function bayessurvreg3
bayessurvreg3.priorInit
bayessurvreg3.priorb
bayessurvreg3.priorb
priorinit.Nb
of the function bayessurvreg3
rho
of the function bayessurvreg3
It is equal to 31 if we are estimating correlation coefficient between the
bayessurvreg3
function
related to a model which considers possible misclassification of the
event status.