
Last chance! 50% off unlimited learning
Sale ends in
These are just sub-parts of bayesBisurvreg.priorInit
and
related functions to make them more readable for the programmer.
give.init.Gspline(prior, init, mcmc.par, dim)give.init.y(init.y, dim, y.left, y.right, status)
give.init.y2(init.y, init2.y, dim, design, design2, doubly)
give.init.r(init.r, init.y, dim, KK,
gamma, sigma, c4delta, intcpt, scale)
prior
argument of the function
bayesHistogram
or prior
and prior2
arguments of the function
init
argument of the function
bayesHistogram
or by init
and init2
arguments of the function
mcmc.par
argument of
function bayesHistogram
or by mcmc.par
and
mcmc.par2
arguments of the function
bayessurvreg.design
related to either the onset time
if doubly censored observations or to the event time. Remark:
design$Y
containbayessurvreg.design
related to time-to-event
if doubly censored observations. Remark:
design2$Y
contains original times and NOT theinit.y
.init.y
.dim
is equal to 1 and
a~matrix with $n$ rows and 2 columns if dim
is equal to
2. Values should be on
dim
with $K$ coefficients
defining the G-spline.dim
with initial
$\gamma$ parameters of the G-spline.dim
with initial
$\sigma$ parameters of the G-spline.dim
with constants to compute the distance between two knots
defining the G-spline.dim
with initial values of the
intercept term of the G-spline.dim
with initial values of the
scale parameters of the G-spline.init.y
, i.e. with 2~columns and
$n$ rows in the case of the bivariate data.