50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

bayesforecast (version 1.0.5)

Hw: A constructor for a Holt-Winters state-space model.

Description

Constructor of the ets("A","A","A") object for Bayesian estimation in Stan.

Usage

Hw(
  ts,
  damped = FALSE,
  xreg = NULL,
  period = 0,
  genT = FALSE,
  series.name = NULL
)

Value

The function returns a list with the data for running stan() function of rstan package.

Arguments

ts

a numeric or ts object with the univariate time series.

damped

a boolean value to specify a damped trend local level model. By default, damped = FALSE. If trend option is FALSE then damped is FALSE automatically.

xreg

Optionally, a numerical matrix of external regressors, which must have the same number of rows as ts. It should not be a data frame.

period

an integer specifying the periodicity of the time series by default the value frequency(ts) is used.

genT

a boolean value to specify for a generalized t-student SSM model.

series.name

an optional string vector with the time series names.

Author

Asael Alonzo Matamoros.

Details

The genT = TRUE option generates a t-student innovations SSM model. For a detailed explanation, check Ardia (2010); or Fonseca, et. al (2019).

The default priors used in a ssm( ) model are:

  • level ~ normal(0,0.5)

  • Trend ~ normal(0,0.5)

  • damped~ normal(0,0.5)

  • Seasonal ~ normal(0,0.5)

  • sigma0 ~ t-student(0,1,7)

  • level1 ~ normal(0,1)

  • trend1 ~ normal(0,1)

  • seasonal1 ~ normal(0,1)

  • dfv ~ gamma(2,0.1)

  • breg ~ t-student(0,2.5,6)

For changing the default prior use the function set_prior().

References

Fonseca, T. and Cequeira, V. and Migon, H. and Torres, C. (2019). The effects of degrees of freedom estimation in the Asymmetric GARCH model with Student-t Innovations. arXiv doi: arXiv: 1910.01398.

See Also

Sarima, auto.arima, and set_prior. garch

Examples

Run this code
mod1 = Hw(ipc)

# Declaring a Holt Winters damped trend model for the ipc data.
mod2 = Hw(ipc,damped = TRUE)

# Declaring an additive Holt-Winters model for the birth data
mod3 = Hw(birth,damped = FALSE)

Run the code above in your browser using DataLab