Constructor of the ets("A","A","A")
object for Bayesian estimation in Stan.
Hw(
ts,
damped = FALSE,
xreg = NULL,
period = 0,
genT = FALSE,
series.name = NULL
)
The function returns a list with the data for running stan()
function of
rstan package.
a numeric or ts object with the univariate time series.
a boolean value to specify a damped trend local level model. By
default, damped = FALSE
. If trend
option is FALSE
then
damped
is FALSE
automatically.
Optionally, a numerical matrix of external regressors, which must have the same number of rows as ts. It should not be a data frame.
an integer specifying the periodicity of the time series by default the value frequency(ts) is used.
a boolean value to specify for a generalized t-student SSM model.
an optional string vector with the time series names.
Asael Alonzo Matamoros.
The genT = TRUE
option generates a t-student innovations SSM model. For
a detailed explanation, check Ardia (2010); or Fonseca, et. al (2019).
The default priors used in a ssm( ) model are:
level ~ normal(0,0.5)
Trend ~ normal(0,0.5)
damped~ normal(0,0.5)
Seasonal ~ normal(0,0.5)
sigma0 ~ t-student(0,1,7)
level1 ~ normal(0,1)
trend1 ~ normal(0,1)
seasonal1 ~ normal(0,1)
dfv ~ gamma(2,0.1)
breg ~ t-student(0,2.5,6)
For changing the default prior use the function set_prior()
.
Fonseca, T. and Cequeira, V. and Migon, H. and Torres, C. (2019). The effects of
degrees of freedom estimation in the Asymmetric GARCH model with Student-t
Innovations. arXiv doi: arXiv: 1910.01398
.
Sarima
, auto.arima
, and set_prior
.
garch
mod1 = Hw(ipc)
# Declaring a Holt Winters damped trend model for the ipc data.
mod2 = Hw(ipc,damped = TRUE)
# Declaring an additive Holt-Winters model for the birth data
mod3 = Hw(birth,damped = FALSE)
Run the code above in your browser using DataLab