Fits Bayesian nonlinear Ornstein-Uhlenbeck models with cubic drift, stochastic volatility (SV), and Student-t innovations. The package implements hierarchical priors for sector-specific parameters and supports parallel MCMC sampling via 'Stan'.
fit_ou_nonlinear_tmg: Fit the main OU model
extract_posterior_summary: Extract posterior summaries
validate_ou_fit: Validate model fit
compare_models_loo: Compare models via PSIS-LOO
The model implements a nonlinear OU process with cubic drift: $$dY_t = \kappa(\theta - Y_t + a_3 (Y_t - \theta)^3) dt + \sigma_t dW_t$$
Maintainer: José Mauricio Gómez Julián isadore.nabi@pm.me (ORCID)
Useful links: