# Access a subset of the usmacro_growth dataset
data <- usmacro_growth[,c("GDPC1", "CPIAUCSL", "FEDFUNDS")]
# Split data in train and test
train <- data[1:(nrow(data)-4),]
test <- data[-c(1:(nrow(data)-4)),]
# Estimate model using train data only
mod <- bvar(train, quiet = TRUE)
# Simulate from 1-step to 4-steps ahead posterior predictive and compute
# log-predictive-likelihoods
predictions <- predict(mod, ahead = 1:4, LPL = TRUE, Y_obs = test)
# Summary
summary(predictions)
# Visualize via fan-charts
plot(predictions)
# \donttest{
# In order to evaluate the joint predictive density of a subset of the
# variables (variables of interest), consider specifying 'LPL_VoI':
predictions <- predict(mod, ahead = 1:4, LPL = TRUE, Y_obs = test, LPL_VoI = c("GDPC1","FEDFUNDS"))
predictions$LPL_VoI
# }
Run the code above in your browser using DataLab