Learn R Programming

bayesics (version 2.0.2)

summary: Summary functions for bayesics objects

Description

Summary functions for bayesics objects

Usage

# S3 method for lm_b
summary(object, CI_level = 0.95, ...)

# S3 method for aov_b summary(object, CI_level = 0.95, ...)

# S3 method for np_glm_b summary(object, CI_level = 0.95, interpretable_scale = TRUE, ...)

# S3 method for lm_b_bma summary(object, CI_level = 0.95, ...)

# S3 method for glm_b summary(object, CI_level = 0.95, interpretable_scale = TRUE, ...)

# S3 method for mediate_b summary(object, CI_level = 0.95, ...)

Value

tibble with summary values

Arguments

object

bayesics object

CI_level

Posterior probability covered by credible interval

...

optional arguments.

interpretable_scale

ADD description!

Examples

Run this code
# \donttest{
set.seed(2025)
N = 500
test_data <-
  data.frame(x1 = rnorm(N),
             x2 = rnorm(N),
             x3 = letters[1:5])
test_data$outcome <-
  rnorm(N,-1 + test_data$x1 + 2 * (test_data$x3 %in% c("d","e")) )
fit1 <-
  lm_b(outcome ~ x1 + x2 + x3,
       data = test_data)
summary(fit1)
# }

Run the code above in your browser using DataLab