- x
Either a (non-empty) numeric vector of data values, or a formula
of the form outcome ~ grouping variable.
- y
an optional (non-empty) numeric vector of data values
- mu
optional. If supplied, t_test_b will return the
posterior probabilty that the population mean (ignored in 2 sample inference)
is less than this value.
- paired
logical. If TRUE, provide both x and y as vectors.
- data
logical. Only used if x is a formula.
- heteroscedastic
logical. Set to FALSE to assume all groups have
equal variance.
- prior_mean_mu
numeric. Hyperparameter for the a priori mean of the
group means.
- prior_mean_nu
numeric. Hyperparameter which scales the precision of
the group means.
- prior_var_shape
numeric. Twice the shape parameter for the inverse gamma prior on
the residual variance(s). I.e., \(\sigma^2\sim IG\)(prior_var_shape/2,prior_var_rate/2).
- prior_var_rate
numeric. Twice the rate parameter for the inverse gamma prior on
the residual variance(s). I.e., \(\sigma^2\sim IG\)(prior_var_shape/2,prior_var_rate/2).
- CI_level
numeric. Credible interval level.
- ROPE
numeric. Used to compute posterior probability that Cohen's D +/- ROPE
- improper
logical. Should we use an improper prior that is proportional
to the inverse of the variance?
- plot
logical. Should the resulting inverse gamma distribution be plotted?
- seed
integer. Always set your seed!!!
- mc_error
The number of posterior draws will ensure that with 99%
probability the bounds of the credible intervals will be within \(\pm\)
mc_error\(\times 4s_y\), that is, within 100mc_error% of the
trimmed range of y. (Ignored for single population inference.)