Model: n=nrow(X) individuals respond to m=ncol(X) questions. all questions are on a scale 1, ..., k.
for respondent i and question j,
$x_ij = d$, if $c_d-1 \le y_i,j \le c_d$.
d=1,...,k. $c_d = a + bd +ed^2$.
$y_i = mu + tau_i*iota + sigma_i*z_i$. $z_i$ $\sim$ $N(0,Sigma)$.
$(tau_i,ln(sigma_i))$ $\sim$ $N(phi,Lamda)$. $phi=(0,lambda_{22})$.
Priors:
mu $\sim$ $N(mubar, Am{^-1})$.
Sigma $\sim$ IW(nu,V).
Lambda $\sim$ IW(Lambdanu,LambdaV).
e $\sim$ unif on a grid.
References
For further discussion, see Bayesian Statistics and Marketing
by Allenby, McCulloch, and Rossi, Case Study on Scale Usage Heterogeneity.
http://gsbwww.uchicago.edu/fac/peter.rossi/research/bsm.html