Learn R Programming

bayesm (version 2.0-9)

llmnl: Evaluate Log Likelihood for Multinomial Logit Model

Description

llmnl evaluates log-likelihood for the multinomial logit model.

Usage

llmnl(beta,y, X)

Arguments

beta
k x 1 coefficient vector
y
n x 1 vector of obs on y (1,..., p)
X
n*p x k Design matrix (use createX to make)

Value

  • value of log-likelihood (sum of log prob of observed multinomial outcomes).

concept

  • multinomial logit
  • likelihood

Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Details

Let $mu_i=X_i \beta$, then $Pr(y_i=j) = exp(mu_{i,j})/\sum_kexp(mu_{i,k})$. $X_i$ is the submatrix of X corresponding to the ith observation. X has n*p rows. Use createX to create X.

References

For further discussion, see Bayesian Statistics and Marketing by Rossi, Allenby and McCulloch. http://faculty.chicagogsb.edu/peter.rossi/research/bsm.html

See Also

createX, rmnlIndepMetrop

Examples

Run this code
##
ll=llmnl(beta,y,X)

Run the code above in your browser using DataLab