data(Scotch)
cat(" Frequencies of Brands", fill=TRUE)
mat=apply(as.matrix(Scotch),2,mean)
print(mat)
##
## use Scotch data to run Multivariate Probit Model
##
if(0){
##
y=as.matrix(Scotch)
p=ncol(y); n=nrow(y)
dimnames(y)=NULL
y=as.vector(t(y))
y=as.integer(y)
I_p=diag(p)
X=rep(I_p,n)
X=matrix(X,nrow=p)
X=t(X)
R=2000
Data=list(p=p,X=X,y=y)
Mcmc=list(R=R)
set.seed(66)
out=rmvpGibbs(Data=Data,Mcmc=Mcmc)
ind=(0:(p-1))*p + (1:p)
cat(" Betadraws ",fill=TRUE)
mat=apply(out$betadraw/sqrt(out$sigmadraw[,ind]),2,quantile,probs=c(.01,.05,.5,.95,.99))
attributes(mat)$class="bayesm.mat"
summary(mat)
rdraw=matrix(double((R)*p*p),ncol=p*p)
rdraw=t(apply(out$sigmadraw,1,nmat))
attributes(rdraw)$class="bayesm.var"
cat(" Draws of Correlation Matrix ",fill=TRUE)
summary(rdraw)
}
Run the code above in your browser using DataLab