data(bank)
cat(" table of Binary Dep Var", fill=TRUE)
print(table(bank$choiceAtt[,2]))
cat(" table of Attribute Variables",fill=TRUE)
mat=apply(as.matrix(bank$choiceAtt[,3:16]),2,table)
print(mat)
cat(" means of Demographic Variables",fill=TRUE)
mat=apply(as.matrix(bank$demo[,2:3]),2,mean)
print(mat)
## example of processing for use with rhierBinLogit
##
if(0)
{
choiceAtt=bank$choiceAtt
Z=bank$demo
## center demo data so that mean of random-effects
## distribution can be interpreted as the average respondent
Z[,1]=rep(1,nrow(Z))
Z[,2]=Z[,2]-mean(Z[,2])
Z[,3]=Z[,3]-mean(Z[,3])
Z[,4]=Z[,4]-mean(Z[,4])
Z=as.matrix(Z)
hh=levels(factor(choiceAtt$id))
nhh=length(hh)
lgtdata=NULL
for (i in 1:nhh) {
y=choiceAtt[choiceAtt[,1]==hh[i],2]
nobs=length(y)
X=as.matrix(choiceAtt[choiceAtt[,1]==hh[i],c(3:16)])
lgtdata[[i]]=list(y=y,X=X)
}
cat("Finished Reading data",fill=TRUE)
fsh()
Data=list(lgtdata=lgtdata,Z=Z)
Mcmc=list(R=10000,sbeta=0.2,keep=20)
set.seed(66)
out=rhierBinLogit(Data=Data,Mcmc=Mcmc)
begin=5000/20
end=10000/20
summary(out$Deltadraw,burnin=begin)
summary(out$Vbetadraw,burnin=begin)
if(0){
## plotting examples
## plot grand means of random effects distribution (first row of Delta)
index=4*c(0:13)+1
matplot(out$Deltadraw[,index],type="l",xlab="Iterations/20",ylab="",
main="Average Respondent Part-Worths")
## plot hierarchical coefs
plot(out$betadraw)
## plot log-likelihood
plot(out$llike,type="l",xlab="Iterations/20",ylab="",main="Log Likelihood")
}
}
Run the code above in your browser using DataLab