data(detailing)
cat(" table of Counts Dep Var", fill=TRUE)
print(table(detailing$counts[,2]))
cat(" means of Demographic Variables",fill=TRUE)
mat=apply(as.matrix(detailing$demo[,2:4]),2,mean)
print(mat)
##
## example of processing for use with rhierNegbinRw
##
if(0)
{
data(detailing)
counts = detailing$counts
Z = detailing$demo
# Construct the Z matrix
Z[,1] = 1
Z[,2]=Z[,2]-mean(Z[,2])
Z[,3]=Z[,3]-mean(Z[,3])
Z[,4]=Z[,4]-mean(Z[,4])
Z=as.matrix(Z)
id=levels(factor(counts$id))
nreg=length(id)
nobs = nrow(counts$id)
regdata=NULL
for (i in 1:nreg) {
X = counts[counts[,1] == id[i],c(3:4)]
X = cbind(rep(1,nrow(X)),X)
y = counts[counts[,1] == id[i],2]
X = as.matrix(X)
regdata[[i]]=list(X=X, y=y)
}
nvar=ncol(X) # Number of X variables
nz=ncol(Z) # Number of Z variables
rm(detailing,counts)
cat("Finished Reading data",fill=TRUE)
fsh()
Data = list(regdata=regdata, Z=Z)
deltabar = matrix(rep(0,nvar*nz),nrow=nz)
Vdelta = 0.01 * diag(nz)
nu = nvar+3
V = 0.01*diag(nvar)
a = 0.5
b = 0.1
Prior = list(deltabar=deltabar, Vdelta=Vdelta, nu=nu, V=V, a=a, b=b)
R = 10000
keep =1
s_beta=2.93/sqrt(nvar)
s_alpha=2.93
c=2
Mcmc = list(R=R, keep = keep, s_beta=s_beta, s_alpha=s_alpha, c=c)
out = rhierNegbinRw(Data, Prior, Mcmc)
# Unit level mean beta parameters
Mbeta = matrix(rep(0,nreg*nvar),nrow=nreg)
ndraws = length(out$alphadraw)
for (i in 1:nreg) { Mbeta[i,] = rowSums(out$Betadraw[i, , ])/ndraws }
cat(" Deltadraws ",fill=TRUE)
summary(out$Deltadraw)
cat(" Vbetadraws ",fill=TRUE)
summary(out$Vbetadraw)
cat(" alphadraws ",fill=TRUE)
summary(out$alphadraw)
if(0){
## plotting examples
plot(out$betadraw)
plot(out$alphadraw)
plot(out$Deltadraw)
}
}
Run the code above in your browser using DataLab