##
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=10000} else {R=10}
set.seed(66)
nvar=5 ## number of coefficients
nlgt=1000 ## number of cross-sectional units
nobs=10 ## number of observations per unit
nz=2 ## number of regressors in mixing distribution
## set hyper-parameters
## B=ZDelta + U
Z=matrix(c(rep(1,nlgt),runif(nlgt,min=-1,max=1)),nrow=nlgt,ncol=nz)
Delta=matrix(c(-2,-1,0,1,2,-1,1,-.5,.5,0),nrow=nz,ncol=nvar)
iota=matrix(1,nrow=nvar,ncol=1)
Vbeta=diag(nvar)+.5*iota%*%t(iota)
## simulate data
lgtdata=NULL
for (i in 1:nlgt)
{ beta=t(Delta)%*%Z[i,]+as.vector(t(chol(Vbeta))%*%rnorm(nvar))
X=matrix(runif(nobs*nvar),nrow=nobs,ncol=nvar)
prob=exp(X%*%beta)/(1+exp(X%*%beta))
unif=runif(nobs,0,1)
y=ifelse(unif<prob,1,0)
lgtdata[[i]]=list(y=y,X=X,beta=beta)
}
out=rhierBinLogit(Data=list(lgtdata=lgtdata,Z=Z),Mcmc=list(R=R))
cat("Summary of Delta draws",fill=TRUE)
summary(out$Deltadraw,tvalues=as.vector(Delta))
cat("Summary of Vbeta draws",fill=TRUE)
summary(out$Vbetadraw,tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))
if(0){
## plotting examples
plot(out$Deltadraw,tvalues=as.vector(Delta))
plot(out$betadraw)
plot(out$Vbetadraw,tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))
}
Run the code above in your browser using DataLab