data(tuna)
cat(" Quantiles of sales",fill=TRUE)
mat=apply(as.matrix(tuna[,2:5]),2,quantile)
print(mat)
##
## example of processing for use with rivGibbs
##
if(0)
{
data(tuna)
t = dim(tuna)[1]
customers = tuna[,30]
sales = tuna[,2:8]
lnprice = tuna[,16:22]
lnwhPrice= tuna[,23:29]
share=sales/mean(customers)
shareout=as.vector(1-rowSums(share))
lnprob=log(share/shareout)
# create w matrix
I1=as.matrix(rep(1, t))
I0=as.matrix(rep(0, t))
intercept=rep(I1, 4)
brand1=rbind(I1, I0, I0, I0)
brand2=rbind(I0, I1, I0, I0)
brand3=rbind(I0, I0, I1, I0)
w=cbind(intercept, brand1, brand2, brand3)
## choose brand 1 to 4
y=as.vector(as.matrix(lnprob[,1:4]))
X=as.vector(as.matrix(lnprice[,1:4]))
lnwhPrice=as.vector(as.matrix (lnwhPrice[1:4]))
z=cbind(w, lnwhPrice)
Data=list(z=z, w=w, x=X, y=y)
Mcmc=list(R=R, keep=1)
set.seed(66)
out=rivGibbs(Data=Data,Mcmc=Mcmc)
cat(" betadraws ",fill=TRUE)
summary(out$betadraw)
if(0){
## plotting examples
plot(out$betadraw)
}
}
Run the code above in your browser using DataLab