Tuning Parameters for SARIMA Models
non_seasonal_ar(range = c(0L, 5L), trans = NULL)non_seasonal_differences(range = c(0L, 2L), trans = NULL)
non_seasonal_ma(range = c(0L, 5L), trans = NULL)
seasonal_ar(range = c(0L, 2L), trans = NULL)
seasonal_differences(range = c(0L, 1L), trans = NULL)
seasonal_ma(range = c(0L, 2L), trans = NULL)
markov_chains(range = c(0L, 8L), trans = NULL)
adapt_delta(range = c(0, 1), trans = NULL)
tree_depth(range = c(0L, 100L), trans = NULL)
A two-element vector holding the defaults for the smallest and largest possible values, respectively.
A trans
object from the scales
package, such as
scales::log10_trans()
or scales::reciprocal_trans()
. If not provided,
the default is used which matches the units used in range
. If no
transformation, NULL
.
A parameter
A parameter
A parameter
A parameter
A parameter
A parameter
A parameter
A parameter
A parameter
The main parameters for SARIMA models are:
non_seasonal_ar
: The order of the non-seasonal auto-regressive (AR) terms.
non_seasonal_differences
: The order of integration for non-seasonal differencing.
non_seasonal_ma
: The order of the non-seasonal moving average (MA) terms.
seasonal_ar
: The order of the seasonal auto-regressive (SAR) terms.
seasonal_differences
: The order of integration for seasonal differencing.
seasonal_ma
: The order of the seasonal moving average (SMA) terms.
markov_chains
: The number of markov chains.
adapt_delta
: The thin of the jumps in a HMC method
tree_depth
: Maximum depth of the trees
# NOT RUN {
non_seasonal_ar()
non_seasonal_differences()
non_seasonal_ma()
# }
Run the code above in your browser using DataLab