Learn R Programming

bayespm (version 0.2.0)

Bayesian Statistical Process Monitoring

Description

The R-package bayespm implements Bayesian Statistical Process Control and Monitoring (SPC/M) methodology. These methods utilize available prior information and/or historical data, providing efficient online quality monitoring of a process, in terms of identifying moderate/large transient shifts (i.e., outliers) or persistent shifts of medium/small size in the process. These self-starting, sequentially updated tools can also run under complete absence of any prior information. The Predictive Control Charts (PCC) are introduced for the quality monitoring of data from any discrete or continuous distribution that is a member of the regular exponential family. The Predictive Ratio CUSUMs (PRC) are introduced for the Binomial, Poisson and Normal data (a later version of the library will cover all the remaining distributions from the regular exponential family). The PCC targets transient process shifts of typically large size (a.k.a. outliers), while PRC is focused in detecting persistent (structural) shifts that might be of medium or even small size. Apart from monitoring, both PCC and PRC provide the sequentially updated posterior inference for the monitored parameter. Bourazas K., Kiagias D. and Tsiamyrtzis P. (2022) "Predictive Control Charts (PCC): A Bayesian approach in online monitoring of short runs" , Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Predictive ratio CUSUM (PRC): A Bayesian approach in online change point detection of short runs" , Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Design and properties of the predictive ratio cusum (PRC) control charts" .

Copy Link

Version

Install

install.packages('bayespm')

Monthly Downloads

240

Version

0.2.0

License

GPL (>= 2)

Maintainer

Dimitrios Kiagias

Last Published

September 10th, 2023

Functions in bayespm (0.2.0)

invgamma_PCC

PCC for Inverse-Gamma data with scale parameter unknown
norm1_PCC

PCC for Normal data with mean unknown
nbinom_HM

The Highest Mass (HM) interval of Beta-Negative Binomial distribution.
lnorm1_PCC

PCC for LogNormal data with scale parameter unknown
nbinom_PCC

PCC for Negative Binomial data with probability parameter unknown
lnorm3_PCC

PCC for LogNormal data with both parameters unknown
lnorm2_PCC

PCC for LogNormal data with shape parameter unknown
norm_mean2_PRC

PRC for Normal data with unknown parameters (mean)
norm_mean2_PRC_h

Derivation of the decision limit for the PRC for Normal data with unknown parameters (mean)
lnorm_HD

The Highest Density (HD) interval of Lognormal distribution.
lt_HD

The Highest Density (HD) interval of Logt distribution.
norm_HD

The Highest Density (HD) interval of Normal distribution.
norm3_PCC

PCC for Normal data with both parameters unknown
pois_PCC

PCC for Poisson data with rate parameter unknown
pois_PRC

PRC for Poisson data with rate parameter unknown
norm2_PCC

PCC for Normal data with variance unknown
t_HD

The Highest Density (HD) interval of Student's t distribution.
pois_PRC_h

Derivation of the decision limit for the PRC for Poisson data with probability parameter unknown
binom_PRC_h

Derivation of the decision limit for the PRC for Binomial data with probability parameter unknown
compgamma_HD

The Highest Density (HD) interval of Compound Gamma distribution.
binom_PCC

PCC for Binomial data with probability parameter unknown
ECE

ECE dataset for the PCC process for Poisson with rate parameter unknown
binom_PRC

PRC for Binomial data with probability parameter unknown
aPTT

Dataset for PCC process for Normal with both parameters unknown
gb2_HD

The Highest Density (HD) interval of Generalized Beta of the second kind distribution.
betanbinom_HM

The Highest Mass (HM) interval of Beta-Negative Binomial distribution.
gamma_PCC

PCC for Gamma data with rate parameter unknown
betabinom_HM

The Highest Mass (HM) interval of Beta-Binomial distribution.