Learn R Programming

bayess (version 1.4)

MAllog: log-likelihood associated with an MA(p) model

Description

This function returns the numerical value of the log-likelihood associated with a time series and an MA(p) model in Chapter 7. It either uses the natural parameterisation of the MA(p) model $$x_t-\mu = \varepsilon_t - \sum_{j=1}^p \psi_{j} \varepsilon_{t-j}$$ or the parameterisation via the lag-polynomial roots $$x_t - \mu = \prod_{i=1}^p (1-\lambda_i B) \varepsilon_t$$ where $B^j \varepsilon_t = \varepsilon_{t-j}$.

Usage

MAllog(p,dat,pr,pc,lr,lc,mu,sig2,compsi=T,pepsi=rep(0,p),eps=rnorm(p))

Arguments

p
order of the MA model
dat
time series modelled by the MA(p) model
pr
number of real roots in the lag polynomial
pc
number of complex roots in the lag polynomial, necessarily even
lr
real roots
lc
complex roots, stored as real part for odd indices and imaginary part for even indices. (lc is either 0 when pc=0 or a vector of even length when pc>0.)
mu
drift parameter $\mu$ such that $(X_t-\mu)_t$ is a standard MA$(p)$ series
sig2
variance of the Gaussian white noise $(\varepsilon_t)_t$
compsi
boolean variable indicating whether the coefficients $\psi_i$ need to be retrieved from the roots of the lag-polynomial (if TRUE) or not (if FALSE)
pepsi
potential coefficients $\psi_i$, computed by the function if compsi is TRUE
eps
white noise terms $(\varepsilon_t)_{t\le 0}$ with negative indices

Value

  • llvalue of the log-likelihood
  • psvector of the $\psi_i$'s, similar to the entry if compsi is FALSE

See Also

ARllog, MAmh

Examples

Run this code
MAllog(p=3,dat=faithful[,1],pr=3,pc=0,lr=rep(.1,3),lc=0,
mu=0,sig2=var(faithful[,1]),compsi=FALSE,pepsi=rep(.1,3),eps=rnorm(3))

Run the code above in your browser using DataLab