Learn R Programming

bayess (version 1.4)

logitll: Log-likelihood of the logit model

Description

Direct computation of the logarithm of the likelihood of a standard logit model (Chapter 4) $$P(y=1|X,\beta)= {1+\exp(-\beta^{T}X)}^{-1}.$$

Usage

logitll(beta, y, X)

Arguments

beta
coefficient of the logit model
y
vector of binary response variables
X
covariate matrix

Value

  • returns the logarithm of the logit likelihood for the data y, covariate matrix X and parameter vector beta

See Also

probitll

Examples

Run this code
data(bank)
y=bank[,5]
X=as.matrix(bank[,-5])
logitll(runif(4),y,X)

Run the code above in your browser using DataLab