Learn R Programming

Bayesian Transmission Model

Provides estimates for critical epidemiological parameters that characterize the spread of bacterial pathogens in healthcare settings. Parameter estimated: Transmission rate (frequency-dependent or density-dependent mass action), importation probability, clearance rate (loss of colonization per colonized person per unit time), surveillance test sensitivity, surveillance test specificity, effect of covariate on transmission (multiplier in relation to overall transmission rate).

Installation

You can install the stable version of bayestransmission from CRAN with:

install.packages("bayestransmission")

To get a bug fix or to use a feature from the development version, you can install the development version of bayestransmission from GitHub with:

You can install the development version of bayestransmission from GitHub with:

# install.packages("devtools")
devtools::install_github("EpiForeSITE/bayestransmission")

System Requirements

This package requires a C++ compiler and the following system dependencies:

  • R (>= 3.5.0)
  • Rcpp (>= 1.0.0)
  • RcppArmadillo

Quick Start

library(bayestransmission)

# Load example data
data(simulated.data)

# Set up model parameters
params <- LinearAbxModel(
  nstates = 2,
  SurveillanceTest = SurveillanceTestParams(
    colonized = Param(init = 0.8, weight = 1),
    uncolonized = Param(init = 1e-10, weight = 0)
  )
  # ... additional parameters
)

# Run MCMC
results <- runMCMC(
  data = simulated.data,
  modelParameters = params,
  nsims = 1000,
  nburn = 100,
  outputparam = TRUE,
  outputfinal = FALSE,
  verbose = TRUE
)

For more detailed examples, see the package vignettes:

browseVignettes("bayestransmission")

References

This work was supported by the Centers for Disease Control and Prevention, Modeling Infectious Diseases in Healthcare Network award U01CK000585.

Copy Link

Version

Install

install.packages('bayestransmission')

Version

0.1.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Andrew Redd

Last Published

December 12th, 2025

Functions in bayestransmission (0.1.0)

runMCMC

Run Bayesian Transmission MCMC
simulated.data

Simulated Transmission Data
Param

Construct a parameter with a prior, weight and an update flag.
OutOfUnitInfectionParams

Out of Unit Infection Parameters
simulated.data_sorted

Simulated Transmission Data (Sorted)
LogNormalModelParams

Model Parameters for a Log Normal Model
InUnitParams

In Unit Parameters
CodeToEvent

Convert coded events to string events
AbxRateParams

Antibiotic Administration Rate Parameters
ClearanceParams

Clearance Parameters
ProgressionParams

Progression Parameters
ParamWRate

Specify a random testing parameter with a rate.
LinearAbxAcquisitionParams

Linear Antibiotic Acquisition Parameters
EventToCode

Convert string events to coded events
LogNormalAcquisitionParams

Log-Normal Acquisition Parameters
AbxParams

Antibiotic Parameters
InsituParams

InSitu Parameters
getCppModelParams

Extract Model Parameters from C++ Model Object
getExposureFlags

Get compilation flags for exposed classes
newModelExport

Create a new model object
RandomTestParams

Random Testing Parameter Set
SurveillanceTestParams

Surveillance Test Parameters
mcmc_to_dataframe

Convert MCMC Parameters to Data Frame
newCppModel

Create a new C++ model object with parameters