# Generate true precision matrix:
p <- 10
n <- 500
OmegaTrue <- pracma::Toeplitz(c(0.7^rep(1:p-1)))
SigTrue <- pracma::inv(OmegaTrue)
# Generate expected value vector:
mu <- rep(0,p)
# Generate multivariate normal distribution:
set.seed(123)
X <- MASS::mvrnorm(n, mu = mu, Sigma = SigTrue)
# Generate posterior distribution:
posterior <- blockBAGL(X, iterations = 1000, burnin = 500)
# Estimated precision matrix using the mean of the posterior:
OmegaEst <- apply(simplify2array(posterior$Omega), 1:2, mean)
Run the code above in your browser using DataLab