Description
By minimizing the cost value, the function estimates the bandwidths of the regressors and normal error variance
parameter for the burn-in periodUsage
warmup(x, inicost, mutsizp, warm = 100, prob = 0.234, data_x, data_y)
Arguments
x
Log of square bandwidths
mutsizp
Step size of random-walk Metropolis algorithm
warm
Number of burn-in iterations
prob
Optimal covergence rate of random-walk Metropolis algorithm
Value
- xLog of square bandwidths
- sigma2Estimate of normal error variance
- costCost value
- mutsizplastFinal step size of random-walk Metropolis algorithm
- mutsizpStep size of random-walk Metropolis algroithm