# NOT RUN {
set.seed(154)
m <- 5
L <- 3
n <- 1000
predictors <- list()
for(i in 1:m) predictors[[i]] <- seq(0,L-1)
par0 <- randompar(predictors=predictors, h0=0, J0=0, dJ=0.5)
xi0 <- sample_xi(nsample=n, predictors=predictors, h=par0$h, J=par0$J)
par1 <- randompar(predictors=predictors, h0=0.1, J0=0.1, dJ=0.5)
xi1 <- sample_xi(nsample=n, predictors=predictors, h=par1$h, J=par1$J)
xi <- rbind(xi0,xi1)
y <- c(rep(0,n),rep(1,n))
dat <- cbind(data.frame(y=y),xi)
dat <- dat[sample(2*n),]
dtrain <- dat[seq(n),]
dtest <- dat[seq(n+1,2*n),]
ytest <- dtest[,'y']
model <- bbl(data=dtrain)
model <- train(model)
pred <- predict(object=model, newdata=dtest)
yhat <- apply(pred,1,which.max)-1
score <- mean(ytest==yhat)
score
auc <- pROC::roc(response=ytest, predictor=pred[,2], direction='<')$auc
auc
# }
Run the code above in your browser using DataLab