x <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
ll <- function(ymax=15, xhalf=6)
-sum(stats::dpois(y, lambda=ymax/(1+x/xhalf), log=TRUE))
(fit <- mle2(ll))
mle2(ll, fixed=list(xhalf=6))
summary(fit)
logLik(fit)
vcov(fit)
p1 <- profile(fit)
plot(p1, absVal=FALSE)
confint(fit)
## use bounded optimization
## the lower bounds are really > 0, but we use >=0 to stress-test profiling
(fit1 <- mle2(ll, method="L-BFGS-B", lower=c(0, 0)))
p1 <- profile(fit1)
plot(p1, absVal=FALSE)
## a better parametrization:
ll2 <- function(lymax=log(15), lxhalf=log(6))
-sum(stats::dpois(y, lambda=exp(lymax)/(1+x/exp(lxhalf)), log=TRUE))
(fit2 <- mle2(ll2))
plot(profile(fit2), absVal=FALSE)
exp(confint(fit2))
vcov(fit2)
cov2cor(vcov(fit2))
mle2(y~dpois(lambda=exp(lymax)/(1+x/exp(lhalf))),
start=list(lymax=0,lhalf=0),
parameters=list(lymax~1,lhalf~1))
Run the code above in your browser using DataLab