Learn R Programming

bbotk (version 0.4.0)

bb_optimize: Black-Box Optimization

Description

This function optimizes a function or Objective with a given method.

Usage

bb_optimize(
  x,
  method = "random_search",
  max_evals = 1000,
  max_time = NULL,
  ...
)

# S3 method for `function` bb_optimize( x, method = "random_search", max_evals = 1000, max_time = NULL, lower = NULL, upper = NULL, maximize = FALSE, ... )

# S3 method for Objective bb_optimize( x, method = "random_search", max_evals = 1000, max_time = NULL, search_space = NULL, ... )

Arguments

x

(function | Objective).

method

(character(1) | Optimizer) Key to retrieve optimizer from mlr_optimizers dictionary or Optimizer.

max_evals

(integer(1)) Number of allowed evaluations.

max_time

(integer(1)) Maximum allowed time in seconds.

...

(named list()) Named arguments passed to objective function. Ignored if Objective is optimized.

lower

(numeric()) Lower bounds on the parameters. If named, names are used to create the domain.

upper

(numeric()) Upper bounds on the parameters.

maximize

(logical()) Logical vector used to create the codomain e.g. c(TRUE, FALSE) -> ps(y1 = p_dbl(tags = "maximize"), y2 = pd_dbl(tags = "minimize")). If named, names are used to create the codomain.

search_space

Value

list of

Examples

Run this code
# NOT RUN {
# function and bounds
fun = function(xs) {
  - (xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10
}

bb_optimize(fun, lower = c(-10, -5), upper = c(10, 5), max_evals = 10)

# function and constant
fun = function(xs, c) {
  - (xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + c
}

bb_optimize(fun, lower = c(-10, -5), upper = c(10, 5), max_evals = 10, c = 1)

# objective
fun = function(xs) {
  c(z = - (xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10)
}

# define domain and codomain using a `ParamSet` from paradox
domain = ps(x1 = p_dbl(-10, 10), x2 = p_dbl(-5, 5))
codomain = ps(z = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun, domain, codomain)

bb_optimize(objective, method = "random_search", max_evals = 10)
# }

Run the code above in your browser using DataLab