This is a generic function that will generate the MAP estimate of a given "BayesianBrick" object. For the model structure: $$theta|gamma \sim H(gamma)$$ $$x|theta \sim F(theta)$$ MAP estimate of theta is theta_MAP = argmax_theta p(theta|gamma,x). For a given Bayesian bricks object obj, the MAP estimate will be:
Where
$$x \sim Gaussian(A z + b, Sigma)$$
$$z \sim Gaussian(m,S)$$
MAP() will return the MAP estimate of z.
See ?MAP.LinearGaussianGaussian for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$mu \sim Gaussian(m,S)$$
Sigma is known.
MAP() will return the MAP estimate of mu.
See ?MAP.GaussianGaussian for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$Sigma \sim InvWishart(v,S)$$
mu is known.
MAP() will return the MAP estimate of Sigma.
See ?MAP.GaussianInvWishart for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$Sigma \sim InvWishart(v,S)$$
$$mu \sim Gaussian(m,Sigma/k)$$
MAP() will return the MAP estimate of mu and Sigma.
See ?MAP.GaussianNIW for details.
Where
$$x \sim Gaussian(X beta,sigma^2)$$
$$sigma^2 \sim InvGamma(a,b)$$
$$beta \sim Gaussian(m,sigma^2 V)$$
X is a row vector, or a design matrix where each row is an obervation.
MAP() will return the MAP estimate of beta and sigma^2.
See ?MAP.GaussianNIG for details.
Where
$$x \sim Categorical(pi)$$
$$pi \sim Dirichlet(alpha)$$
MAP() will return the MAP estimate of pi.
See ?MAP.CatDirichlet for details.
Where
$$x \sim Categorical(pi)$$
$$pi \sim DirichletProcess(alpha)$$
MAP() will return the MAP estimate of pi.
See ?MAP.CatDP for details.
MAP(obj, ...)A "BayesianBrick" object used to select a method.
further arguments passed to or from other methods.
A list of the MAP estimates
MAP.LinearGaussianGaussian for Linear Gaussian and Gaussian conjugate structure, MAP.GaussianGaussian for Gaussian-Gaussian conjugate structure, MAP.GaussianInvWishart for Gaussian-Inverse-Wishart conjugate structure, MAP.GaussianNIW for Gaussian-NIW conjugate structure, MAP.GaussianNIG for Gaussian-NIG conjugate structure, MAP.CatDirichlet for Categorical-Dirichlet conjugate structure, MAP.CatDP for Categorical-DP conjugate structure ...