This is a generic function that will generate the MPE estimate of a given "BayesianBrick" object. i.e. for the model structure: $$theta|gamma \sim H(gamma)$$ $$x|theta \sim F(theta)$$ MPE estimate of theta is theta_MPE = E(theta|gamma,x), E() is the expectation function. For a given Bayesian bricks object obj, the MPE estimate will be:
Where
$$x \sim Gaussian(A z + b, Sigma)$$
$$z \sim Gaussian(m,S)$$
MPE()
will return the MPE estimate of z.
See ?MPE.LinearGaussianGaussian
for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$mu \sim Gaussian(m,S)$$
Sigma is known.
MPE()
will return the MPE estimate of mu.
See ?MPE.GaussianGaussian
for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$Sigma \sim InvWishart(v,S)$$
mu is known.
MPE()
will return the MPE estimate of Sigma.
See ?MPE.GaussianInvWishart
for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$Sigma \sim InvWishart(v,S)$$
$$mu \sim Gaussian(m,Sigma/k)$$
MPE()
will return the MPE estimate of mu and Sigma.
See ?MPE.GaussianNIW
for details.
Where
$$x \sim Gaussian(X beta,sigma^2)$$
$$sigma^2 \sim InvGamma(a,b)$$
$$beta \sim Gaussian(m,sigma^2 V)$$
X is a row vector, or a design matrix where each row is an obervation.
MPE()
will return the MPE estimate of beta and sigma^2.
See ?MPE.GaussianNIG
for details.
Where
$$x \sim Categorical(pi)$$
$$pi \sim Dirichlet(alpha)$$
MPE()
will return the MPE estimate of pi.
See ?MPE.CatDirichlet
for details.
Where
$$x \sim Categorical(pi)$$
$$pi \sim DirichletProcess(alpha)$$
MPE()
will return the MPE estimate of pi.
See ?MPE.CatDP
for details.
MPE(obj, ...)
A "BayesianBrick" object used to select a method.
further arguments passed to or from other methods.
A list of MPE estimates
MPE.LinearGaussianGaussian
for Linear Gaussian and Gaussian conjugate structure, MPE.GaussianGaussian
for Gaussian-Gaussian conjugate structure, MPE.GaussianInvWishart
for Gaussian-Inverse-Wishart conjugate structure, MPE.GaussianNIW
for Gaussian-NIW conjugate structure, MPE.GaussianNIG
for Gaussian-NIG conjugate structure, MPE.CatDirichlet
for Categorical-Dirichlet conjugate structure, MPE.CatDP
for Categorical-DP conjugate structure ...