Generate the MPE of "pi" in following Categorical-Dirichlet structure:
$$pi|alpha \sim Dir(alpha)$$
$$x|pi \sim Categorical(pi)$$
Where Dir() is the Dirichlet distribution, Categorical() is the Categorical distribution. See ?dDir and dCategorical for the definitions of these distribution.
The model structure and prior parameters are stored in a "CatDirichlet" object.
MPE is pi_MPE = E(pi|alpha,x), E() is the expectation function.
Usage
# S3 method for CatDirichlet
MPE(obj, ...)
Arguments
obj
A "CatDirichlet" object.
...
Additional arguments to be passed to other inherited types.
Value
A numeric vector, the MPE of "pi".
References
Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.