Learn R Programming

bbricks (version 0.1.4)

MPE.GaussianInvWishart: Mean Posterior Estimate (MPE) of a "GaussianInvWishart" object

Description

Generate the MPE estimate of Sigma in following model structure: $$x \sim Gaussian(mu,Sigma)$$ $$Sigma \sim InvWishart(v,S)$$ mu is known. Gaussian() is the Gaussian distribution. See ?dGaussian and ?dInvWishart for the definition of the distributions. The model structure and prior parameters are stored in a "GaussianInvWishart" object. The MPE estimates are:

  • (Sigma_MPE) = E(Sigma|v,S,x,mu)

Usage

# S3 method for GaussianInvWishart
MPE(obj, ...)

Arguments

obj

A "GaussianInvWishart" object.

...

Additional arguments to be passed to other inherited types.

Value

matrix, the MPE estimate of "Sigma".

References

Gelman, Andrew, et al. Bayesian data analysis. CRC press, 2013.

MARolA, K. V., JT KBNT, and J. M. Bibly. Multivariate analysis. AcadeInic Press, Londres, 1979.

See Also

GaussianInvWishart

Examples

Run this code
# NOT RUN {
obj <- GaussianInvWishart(gamma=list(mu=c(-1.5,1.5),v=3,S=diag(2)))
x <- rGaussian(100,mu = c(-1.5,1.5),Sigma = matrix(c(0.1,0.03,0.03,0.1),2,2))
ss <- sufficientStatistics(obj=obj,x=x,foreach = FALSE)
posterior(obj=obj,ss = ss)
MPE(obj)
# }

Run the code above in your browser using DataLab