Learn R Programming

bbricks (version 0.1.4)

MPE.GaussianNIG: Mean Posterior Estimate (MPE) of a "GaussianNIG" object

Description

Generate the MPE estimate of (beta,sigma^2) in following Gaussian-NIG structure: $$x \sim Gaussian(X beta,sigma^2)$$ $$sigma^2 \sim InvGamma(a,b)$$ $$beta \sim Gaussian(m,sigma^2 V)$$ Where X is a row vector, or a design matrix where each row is an obervation. InvGamma() is the Inverse-Gamma distribution, Gaussian() is the Gaussian distribution. See ?dInvGamma and dGaussian for the definitions of these distribution. The model structure and prior parameters are stored in a "GaussianNIG" object. The MPEs are E(beta,sigma^2|m,V,a,b,X,x)

Usage

# S3 method for GaussianNIG
MPE(obj, ...)

Arguments

obj

A "GaussianNIG" object.

...

Additional arguments to be passed to other inherited types.

Value

A named list, the MPE estimate of beta and sigma^2.

References

Banerjee, Sudipto. "Bayesian Linear Model: Gory Details." Downloaded from http://www. biostat. umn. edu/~ph7440 (2008).

See Also

GaussianNIG