Learn R Programming

bbricks (version 0.1.4)

MPE.GaussianNIW: Mean Posterior Estimate (MPE) of a "GaussianNIW" object

Description

Generate the MPE of (mu,Sigma) in following GaussianNIW structure: $$mu,Sigma|m,k,v,S \sim NIW(m,k,v,S)$$ $$x|mu,Sigma \sim Gaussian(mu,Sigma)$$ Where NIW() is the Normal-Inverse-Wishart distribution, Gaussian() is the Gaussian distribution. See ?dNIW and dGaussian for the definitions of these distribution. The model structure and prior parameters are stored in a "GaussianNIW" object. The MPE estimates are:

  • (mu_MPE,Sigma_MPE) = E(mu,Sigma|m,k,v,S,x)

Usage

# S3 method for GaussianNIW
MPE(obj, ...)

Arguments

obj

A "GaussianNIW" object.

...

Additional arguments to be passed to other inherited types.

Value

A named list, the MPE estimate of mu and Sigma.

References

Murphy, Kevin P. "Conjugate Bayesian analysis of the Gaussian distribution." def 1.22 (2007): 16.

Gelman, Andrew, et al. "Bayesian Data Analysis Chapman & Hall." CRC Texts in Statistical Science (2004).

See Also

GaussianNIW