This is a generic function that will generate the the density value of the posterior distribution. i.e. for the model structure:
$$theta|gamma \sim H(gamma)$$
$$x|theta \sim F(theta)$$
get the probability density/mass from the distribution \(theta \sim H(gamma)\).
For a given Bayesian bricks object obj and an observation of theta, dPosterior()
will calculate the density value for different model structures:
Where
$$x \sim Gaussian(A z + b, Sigma)$$
$$z \sim Gaussian(m,S)$$
dPosterior()
will return p(theta|m,S)
See ?dPosterior.LinearGaussianGaussian
for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$mu \sim Gaussian(m,S)$$
Sigma is known.
dPosterior()
will return p(mu|m,S)
See ?dPosterior.GaussianGaussian
for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$Sigma \sim InvWishart(v,S)$$
mu is known.
dPosterior()
will return p(Sigma|v,S)
See ?dPosterior.GaussianInvWishart
for details.
Where
$$x \sim Gaussian(mu,Sigma)$$
$$Sigma \sim InvWishart(v,S)$$
$$mu \sim Gaussian(m,Sigma/k)$$
dPosterior()
will return p(mu,Sigma|m,k,v,S)
See ?dPosterior.GaussianNIW
for details.
Where
$$x \sim Gaussian(X beta,sigma^2)$$
$$sigma^2 \sim InvGamma(a,b)$$
$$beta \sim Gaussian(m,sigma^2 V)$$
X is a row vector, or a design matrix where each row is an obervation.
dPosterior()
will return p(beta,sigma^2|m,V,a,b)
See ?dPosterior.GaussianNIG
for details.
Where
$$x \sim Categorical(pi)$$
$$pi \sim Dirichlet(alpha)$$
dPosterior()
will return p(pi|alpha)
See ?dPosterior.CatDirichlet
for details.
dPosterior(obj, ...)
A "BayesianBrick" object used to select a method.
further arguments passed to or from other methods.
numeric, the density value
dPosterior.LinearGaussianGaussian
for Linear Gaussian and Gaussian conjugate structure, dPosterior.GaussianGaussian
for Gaussian-Gaussian conjugate structure, dPosterior.GaussianInvWishart
for Gaussian-Inverse-Wishart conjugate structure, dPosterior.GaussianNIW
for Gaussian-NIW conjugate structure, dPosterior.GaussianNIG
for Gaussian-NIG conjugate structure, dPosterior.CatDirichlet
for Categorical-Dirichlet conjugate structure ...