This is a generic function that will generate the sufficient statistics of a given Bayesian bricks object. i.e.
for the model structure:
$$theta|gamma \sim H(gamma)$$
$$x|theta \sim F(theta)$$
get the sufficient statistics T(x).
For a given sample set x, each row of x is an observation, and a Bayesian bricks object obj. sufficientStatistics()
return the sufficient statistics for different model structures:
$$x \sim Gaussian(A z + b, Sigma)$$ $$z \sim Gaussian(m,S)$$ The sufficient statistics are:
SA = \(sum_{i=1:N} A_i^T Sigma^{-1} A_i\)
SAx = \(sum_{i=1:N} A_i^T Sigma^{-1} (x_i-b_i)\)
?sufficientStatistics.LinearGaussianGaussian
for details.Where $$x \sim Gaussian(mu,Sigma)$$ $$mu \sim Gaussian(m,S)$$ Sigma is known. The sufficient statistics are:
N: the effective number of samples.
xsum: the row sums of the samples.
?sufficientStatistics.GaussianGaussian
for details.Where $$x \sim Gaussian(mu,Sigma)$$ $$Sigma \sim InvWishart(v,S)$$ mu is known. The sufficient statistics are:
N: the effective number of samples.
xsum: the sample scatter matrix centered on the mean vector.
?sufficientStatistics.GaussianInvWishart
for details.Where $$x \sim Gaussian(mu,Sigma)$$ $$Sigma \sim InvWishart(v,S)$$ $$mu \sim Gaussian(m,Sigma/k)$$ The sufficient statistics are:
N: the effective number of samples.
xsum: the row sums of the samples.
S: the uncentered sample scatter matrix.
?sufficientStatistics.GaussianNIW
for details.Where $$x \sim Gaussian(X beta,sigma^2)$$ $$sigma^2 \sim InvGamma(a,b)$$ $$beta \sim Gaussian(m,sigma^2 V)$$ X is a row vector, or a design matrix where each row is an obervation. The sufficient statistics are:
N: the effective number of samples.
SXx: covariance of X and x
SX: the uncentered sample scatter matrix.
Sx: the variance of x
?sufficientStatistics.GaussianNIG
for details.Where
$$x \sim Categorical(pi)$$
$$pi \sim Dirichlet(alpha)$$
The sufficient statistics of CatDirichlet object can either be x itself, or the counts of the unique labels in x.
See ?sufficientStatistics.CatDirichlet
for details.
Where
$$x \sim Categorical(pi)$$
$$pi \sim DirichletProcess(alpha)$$
The sufficient statistics of CatDP object can either be x itself, or the counts of the unique labels in x.
See ?sufficientStatistics.CatDP
for details.
Where
$$pi|alpha \sim DP(alpha,U)$$
$$z|pi \sim Categorical(pi)$$
$$theta_z|psi \sim H0(psi)$$
$$x|theta_z,z \sim F(theta_z)$$
The sufficient statistics of "DP" object is the same sufficient statistics of the "BasicBayesian" inside the "DP".
See ?sufficientStatistics.DP
for details.
Where
$$G|gamma \sim DP(gamma,U)$$
$$pi_j|G,alpha \sim DP(alpha,G), j = 1:J$$
$$z|pi_j \sim Categorical(pi_j)$$
$$k|z,G \sim Categorical(G),\textrm{ if z is a sample from the base measure G}$$
$$theta_k|psi \sim H0(psi)$$
The sufficient statistics of "HDP" object is the same sufficient statistics of the "BasicBayesian" inside the "HDP".
See ?sufficientStatistics.HDP
for details.
Where
$$G |eta \sim DP(eta,U)$$
$$G_m|gamma,G \sim DP(gamma,G), m = 1:M$$
$$pi_{mj}|G_m,alpha \sim DP(alpha,G_m), j = 1:J_m$$
$$z|pi_{mj} \sim Categorical(pi_{mj})$$
$$k|z,G_m \sim Categorical(G_m),\textrm{ if z is a sample from the base measure} G_m$$
$$u|k,G \sim Categorical(G),\textrm{ if k is a sample from the base measure} G$$
$$theta_u|psi \sim H0(psi)$$
$$x|theta_u,u \sim F(theta_u)$$
The sufficient statistics of "HDP2" object is the same sufficient statistics of the "BasicBayesian" inside the "HDP2".
See ?sufficientStatistics.HDP2
for details.
sufficientStatistics(obj, x, ...)
a "BayesianBrick" object used to select a method.
a set of samples.
further arguments passed to or from other methods.
An object of corresponding sufficient statistics class, such as "ssGaussian"
sufficientStatistics.LinearGaussianGaussian
for Linear Gaussian and Gaussian conjugate structure, sufficientStatistics.GaussianGaussian
for Gaussian-Gaussian conjugate structure, sufficientStatistics.GaussianInvWishart
for Gaussian-Inverse-Wishart conjugate structure, sufficientStatistics.GaussianNIW
for Gaussian-NIW conjugate structure, sufficientStatistics.GaussianNIG
for Gaussian-NIG conjugate structure, sufficientStatistics.CatDirichlet
for Categorical-Dirichlet conjugate structure, sufficientStatistics.CatDP
for Categorical-DP conjugate structure ...
# NOT RUN {
x <- rGaussian(10,mu = 1,Sigma = 1)
obj <- GaussianNIW() #an GaussianNIW object
sufficientStatistics(obj=obj,x=x)
# }
Run the code above in your browser using DataLab