data(EOC)
head(EOC)
if (FALSE) {
# FULL data estimator
dise_full <- pre_data(EOC$D.full, EOC$CA125)
dise_vec_full <- dise_full$dise_vec
vus_mar("full", diag_test = EOC$CA125, dise_vec = dise_vec_full)
}
if (FALSE) {
# Preparing the missing disease status
dise_na <- pre_data(EOC$D, EOC$CA125)
dise_vec_na <- dise_na$dise_vec
dise_fact_na <- dise_na$dise
# FI estimator
rho_out <- rho_mlogit(dise_fact_na ~ CA125 + CA153 + Age, data = EOC,
test = TRUE)
vus_mar("fi", diag_test = EOC$CA125, dise_vec = dise_vec_na,
veri_stat = EOC$V, rho_est = rho_out)
# MSI estimator
vus_mar("msi", diag_test = EOC$CA125, dise_vec = dise_vec_na,
veri_stat = EOC$V, rho_est = rho_out)
# IPW estimator
pi_out <- psglm(V ~ CA125 + CA153 + Age, data = EOC, test = TRUE)
vus_mar("ipw", diag_test = EOC$CA125, dise_vec = dise_vec_na,
veri_stat = EOC$V, pi_est = pi_out)
# SPE estimator
vus_mar("spe", diag_test = EOC$CA125, dise_vec = dise_vec_na,
veri_stat = EOC$V, rho_est = rho_out, pi_est = pi_out)
# KNN estimator, K = 1, Mahalanobis distance
x_mat <- cbind(EOC$CA125, EOC$CA153, EOC$Age)
rho_maha_1nn <- rho_knn(x_mat = x_mat, dise_vec = dise_vec_na,
veri_stat = EOC$V, k = 1, type = "mahala")
vus_mar("knn", diag_test = EOC$CA125, dise_vec = dise_vec_na,
veri_stat = EOC$V, rho_est = rho_maha_1nn)
}
Run the code above in your browser using DataLab