Learn R Programming

bellreg

The goal of bellreg is to provide a set of functions to fit regression models for count data with overdispersion using the Bell distribution. The implemented models account for ordinary and zero-inflated regression models under both frequentist and Bayesian approaches. Theoretical details regarding the models implemented in the package can be found in Castellares et al. (2018) doi:10.1016/j.apm.2017.12.014 and Lemonte et al. (2020) doi:10.1080/02664763.2019.1636940.

Installation

You can install the development version of bellreg from GitHub with:

# install.packages("devtools")
devtools::install_github("fndemarqui/bellreg")

Example

library(bellreg)

data(faults)

# ML approach:
mle <- bellreg(nf ~ lroll, data = faults, approach = "mle", init = 0)
summary(mle)
#> Call:
#> bellreg(formula = nf ~ lroll, data = faults, approach = "mle", 
#>     init = 0)
#> 
#> Coefficients:
#>               Estimate     StdErr z.value   p.value    
#> (Intercept) 0.98524220 0.33219474  2.9659  0.003018 ** 
#> lroll       0.00190934 0.00049004  3.8963 9.766e-05 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> logLik = -88.96139   AIC = 181.9228

# Bayesian approach:
bayes <- bellreg(nf ~ lroll, data = faults, approach = "bayes", refresh = FALSE)
summary(bayes)
#> 
#> bellreg(formula = nf ~ lroll, data = faults, approach = "bayes", 
#>     refresh = FALSE)
#> 
#>              mean se_mean    sd  2.5%   25%   50%   75% 97.5%    n_eff Rhat
#> (Intercept) 0.974   0.007 0.341 0.305 0.751 0.967 1.205 1.642 2459.956    1
#> lroll       0.002   0.000 0.000 0.001 0.002 0.002 0.002 0.003 2728.380    1
#> 
#> Inference for Stan model: bellreg.
#> 4 chains, each with iter=2000; warmup=1000; thin=1; 
#> post-warmup draws per chain=1000, total post-warmup draws=4000.

Copy Link

Version

Install

install.packages('bellreg')

Monthly Downloads

763

Version

0.0.2.1

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Fabio Demarqui

Last Published

June 17th, 2024

Functions in bellreg (0.0.2.1)

print.summary.bellreg

Print the summary.bellreg output
fitted.bellreg

Extract Model Fitted Values
summary.zibellreg

Summary for the zibellreg model
vcov.bellreg

Variance-covariance matrix for a bellreg model
confint.zibellreg

Confidence intervals for the regression coefficients
coef.zibellreg

Estimated regression coefficients for zibellreg model
bellreg-package

The 'bellreg' package.
AIC.zibellreg

Akaike information criterion for zibellreg objects
Bell

Probability function, distribution function, quantile function and random generation for the Bell distribution with parameter theta.
bellreg

Bell regression model
AIC.bellreg

Akaike information criterion
coef.bellreg

Estimated regression coefficients for the bellreg model
confint.bellreg

Confidence intervals for the regression coefficients
cells

Cells data set
zibellreg

ZiBell regression model
extract_log_lik

Extract pointwise log-likelihood from a Stan model for a bellreg model
summary.bellreg

Summary for the bellreg model
print.summary.zibellreg

Print the summary.zibellreg output
vcov.zibellreg

Covariance of the regression coefficients
faults

Faults data set