Learn R Programming

berryFunctions (version 1.11.0)

climateGraph: climate graph after Walter and Lieth

Description

Draw a climate diagramm by the standards of Walter and Lieth.

Usage

climateGraph(temp, rain, main = "StatName\n52\U00B0 24' N / 12\U00B0 58' E\n42 m aSL", units = c("\U00B0 C", "mm"), labs=substr(month.abb,1,1), textprop = 0.2, ylim = range(temp, rain/2), compress = FALSE, ticks = -5:20 * 10, mar = c(1.5, 2.3, 4.5, 2.3), box = TRUE, keeplayout = FALSE, graylines = TRUE, lty = 1, colrain = "blue", coltemp = "red", lwd = 2, arghumi = NULL, argarid = NULL, argcomp = NULL, ...)

Arguments

temp
monthly temperature mean in degrees C
rain
monthly rain sum in mm (12 values)
main
location info as character string. can have \n. DEFAULT: "StatName\n52d 24' N / 12d 58' E\n42 m aSL"
units
units used for labelling. DEFAULT: c("d C", "mm")
labs
labels for x axis. DEFAULT: J,F,M,A,M,J,J,A,S,O,N,D
textprop
proportion of graphic that is used for writing the values in a table to the right. DEFAULT: 0.2
ylim
limit for y axis in temp units. DEFAULT: range(temp, rain/2)
compress
should rain>100 mm be compressed with adjusted labelling? (not recommended for casual visualization!). DEFAULT: FALSE
ticks
positions for vertical labelling and line drawing. DEFAULT: -5:20*10
mar
plot margins. DEFAULT: c(1.5,2.3,4.5,2.3)
box
draw box along outer margins of graph? DEFAULT: TRUE
keeplayout
Keep the layout and parameters changed with par? DEFAULT: FALSE
graylines
plot horizontal gray lines at every 10 degrees and vertically for each month?. DEFAULT: TRUE
lty
line type of gray lines, see par. DEFAULT: 1
colrain
Color for rain line and axis labels. DEFAULT: "blue"
coltemp
color for temperature line and axis labels. DEFAULT: "red"
lwd
line width of actual temp and rain lines. DEFAULT: 2
arghumi
Arguments for humid polygon, like density, angle. DEFAULT: NULL (internal x,y, col, border)
argarid
Arguments for arid area. DEFAULT: NULL
argcomp
Arguments for compressed rainfall polygon. DEFAULT: NULL
...
further arguments passed to plot, like col.main

Value

None. Plots data and table.

References

Heinrich Walter, Helmut Lieth: Klimadiagramm-Weltatlas. Gustav Fischer Verlag, Jena 1967 Examples: http://www.hoelzel.at/_verlag/geojournal/archiv/klima/2006_01/lieth.gif http://www.hoelzel.at/_verlag/geojournal/archiv/klima/istanbul/istanbul200.gif http://www.ipb.uni-tuebingen.de/kurs/comp/1_excel2007/1_pic/2007diagramm_verbund02.jpg http://www.zivatar.hu/felhotar/albums/userpics/wldp.png

See Also

diagwl in package climatol

Examples

Run this code

temp <- c(-9.3,-8.2,-2.8,6.3,13.4,16.8,18.4,17,11.7,5.6,-1,-5.9)#
rain <- c(46,46,36,30,31,21,26,57,76,85,59,46)

climateGraph(temp, rain) # default settings
climateGraph(temp, rain, textprop=0) # no table written to the right
climateGraph(temp, rain, lty=3) # dotted background lines
# vertical lines instead of filled polygon:
climateGraph(temp, rain, arghumi=list(density=15, angle=90)) 
# fill color for arid without transparency:
climateGraph(temp, rain, argarid=list(col="gold")) 
# for the Americans ;-) (axes should be different, though!):
climateGraph(temp, rain, units=c("\U00B0 F","in")) 

rain <- c(23, 11, 4, 2, 10, 53, 40, 15, 21, 25, 29, 22)
# fix ylim if you want to compare diagrams of different stations:
climateGraph(temp, rain, ylim=c(-15, 50)) # works with two arid phases as well

rain <- c(54, 23, 5, 2, 5, 70, 181, 345, 265, 145, 105, 80) # with extrema
climateGraph(temp, rain) # August can be visually compared to June
climateGraph(temp, rain, compress=TRUE) # compressing extrema enables a better
# view of the temperature, but heigths of rain cannot be visually compared anymore
climateGraph(temp, rain, compress=TRUE, ylim=c(-10, 90))
# needs ylim in linearly continued temp units
climateGraph(temp, rain, compress=TRUE, argcomp=list(density=30, col=6))

## Not run: 
# ## Rcmd check --as-cran doesn't like to open external devices such as pdf,
# ## so this example is excluded from running in the checks.
# setwd("C:/Users/berry/Desktop")
# pdf("ClimateGraph.pdf")
# climateGraph(temp, rain, main="Another Station\nlocated somewhere\n369 ft a sl")
# dev.off()
# 
# # further German reading:
# browseURL("http://www.klimadiagramme.de/all.html")
# 
# 
# # One large Dataset:
# NOOAlink <- "http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/"
# browseURL(NOOAlink)
# # Find your Station here:
# browseURL(paste0(NOOAlink,"/station-inventories/allstations.txt")
# 
# # Data from Roseburg, Oregon, where I once lived:
# download.file(destfile="Roseburg.txt", url=paste0("http://www1.ncdc.noaa.gov/",
#           "pub/data/normals/1981-2010/products/station/USC00357331.normals.txt")
# RT <- read.table(file="Roseburg.txt", skip=11, nrows=1, as.is=TRUE)[1,-1]
# RT <- ( as.numeric(substr(RT,1,3))/10   - 32) * 5/9     # converted to degrees C
# RP <- read.table(file="Roseburg.txt", skip=580, nrows=1, as.is=TRUE)[1,-1]
# RP <-  as.numeric(substr(RP,1,nchar(RP)-1))/100*25.4
# meta <- read.table(file="Roseburg.txt", nrows=5, as.is=TRUE, sep=":")
# meta <- paste(meta[1,2], paste(meta[3:4 ,2], collapse=" /"), meta[5,2], sep="\n")
# 
# climateGraph(RT, RP, main=meta)
# climateGraph(RT, RP, main=meta, compress=TRUE)
# 
# 
# # abstract mean values from weather data
# 
# browseURL("http://www.dwd.de") # Klima Umwelt - Klimadaten - online,frei
# # - Klimadaten Deutschland - Messstationen - Tageswerte
# 
# download.file(destfile="Potsdam.zip", url= paste(
# "http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU2/KU21/",
# "klimadaten/german/download/tageswerte/kl__10379__hist__txt,templateId=raw,",
# "property=publicationFile.zip/kl_10379_hist_txt.zip", sep=""))
# 
# unzip("Potsdam.zip", exdir="PotsdamKlima")
# pk <- read.table(dir("PotsdamKlima", pattern="^[p]", full.names=TRUE), sep=";",
#                  header=TRUE, na="-999")
# dates <- strptime(pk$Mess_Datum, "%Y%m%d")
# temp <- tapply(pk$LUFTTEMPERATUR, INDEX=format(dates, "%m"), FUN=mean, na.rm=FALSE)
# precsums <- tapply(pk$NIEDERSCHLAGSHOEHE, INDEX=format(dates, "%Y-%m"), FUN=sum)
# eachmonth <- format(strptime(paste(names(precsums),"01"), "%Y-%m %d"),"%m")
# prec <- tapply(precsums, eachmonth, FUN=mean)
# meta <- paste("Potsdam\n", paste(range(dates), collapse=" to "), "\n", sep="")
# 
# # If you want to add things later, use keeplayout and graphics.off() to reset par
# climateGraph(temp, prec, main=meta, ylim=c(-2, 45), keeplayout=TRUE)
# # Add Quartiles (as in boxplots): numerically sorted, 50% of the data lie inbetween
# T25 <- tapply(pk$LUFTTEMPERATUR, INDEX=format(dates, "%m"),
#               FUN=quantile, na.rm=FALSE, probs=0.25)
# T75 <- tapply(pk$LUFTTEMPERATUR, INDEX=format(dates, "%m"),
#               FUN=quantile, na.rm=FALSE, probs=0.75)
# arrows(x0=1:12, y0=T25, y1=T75, angle=90, code=3, col=2, len=0.1)
# #
# P25 <- tapply(precsums, eachmonth, FUN=quantile, na.rm=FALSE, probs=0.25)
# P75 <- tapply(precsums, eachmonth, FUN=quantile, na.rm=FALSE, probs=0.75)
# arrows(x0=1:12, y0=P25/2, y1=P75/2, angle=90, code=3, col=4, len=0, lwd=3, lend=1)
# title(main=c("","","IQR shown als lines"), col.main=8)
# 
# 
# # Comparison to diagrams in climatol
# install.packages("climatol")
# help(package="climatol")
# library(climatol)
# data(datcli)
# diagwl(datcli,est="Example station",alt=100,per="1961-90",mlab="en")
# 
# ## End(Not run)

Run the code above in your browser using DataLab