# NOT RUN {
library(betaBayes)
library(betareg)
## Data from Ferrari and Cribari-Neto (2004)
data("GasolineYield", package = "betareg")
data("FoodExpenditure", package = "betareg")
## four-parameter beta mean regression
mcmc=list(nburn=2000, nsave=1000, nskip=4, ndisplay=1000);
# Note larger nburn, nsave and nskip should be used in practice.
prior = list(th1a0 = 0, th2b0 = 1)
# here the natural bound (0,1) is used to specify the prior
# GasolineYield
set.seed(100)
gy_res1 <- beta4reg(yield ~ batch + temp, data = GasolineYield,
link = "logit", model = "mean",
mcmc = mcmc, prior = prior)
(gy_sfit1 <- summary(gy_res1))
cox.snell.beta4reg(gy_res1) # Cox-Snell plot
# FoodExpenditure
set.seed(100)
fe_res1 <- beta4reg(I(food/income) ~ income + persons, data = FoodExpenditure,
link = "logit", model = "mean",
mcmc = mcmc, prior = prior)
(fe_sfit1 <- summary(fe_res1))
cox.snell.beta4reg(fe_res1) # Cox-Snell plot
## two-parameter beta mean regression with support (0,1)
mcmc=list(nburn=2000, nsave=1000, nskip=4, ndisplay=1000);
# Note larger nburn, nsave and nskip should be used in practice.
prior = list(th1a0 = 0, th1b0 = 0, th2a0 = 1, th2b0 = 1)
# this setting forces the support to be (0,1)
# GasolineYield
set.seed(100)
gy_res2 <- beta4reg(yield ~ batch + temp, data = GasolineYield,
link = "logit", model = "mean",
mcmc = mcmc, prior = prior)
(gy_sfit2 <- summary(gy_res2))
cox.snell.beta4reg(gy_res2) # Cox-Snell plot
# FoodExpenditure
set.seed(100)
fe_res2 <- beta4reg(I(food/income) ~ income + persons, data = FoodExpenditure,
link = "logit", model = "mean",
mcmc = mcmc, prior = prior)
(fe_sfit2 <- summary(fe_res2))
cox.snell.beta4reg(fe_res2) # Cox-Snell plot
# }
Run the code above in your browser using DataLab