Usage
tegarch.est(y, asym = TRUE, skew = TRUE, components = 1, initial.values = NULL,
lower = NULL, upper = NULL, compute.hessian = FALSE, lambda.initial = NULL,
c.code = TRUE, logl.penalty = -1e+100, verbose = TRUE, aux = NULL, ...)
Arguments
y
numeric vector, typically a financial return series.
asym
logical, TRUE (default) or FALSE. TRUE includes leverage or volatility asymmetry in the log-scale specification
skew
logical, TRUE (default) or FALSE. TRUE enables and estimates the skewness in conditional density (epsilon). The skewness method is that of Fernandez and Steel (1998).
components
Numeric value, either 1 (default) or 2. The former estimates a one-component model, the latter a two-component model.
initial.values
NULL (default) or a vector with the initial values. If NULL, then then function automatically chooses the initial values according to model (with or without skewness, 1 or 2 components, etc.).
lower
NULL (default) or a vector with the lower bounds. If NULL, then the values are automatically chosen.
upper
NULL (default) or a vector with the upper bounds. If NULL, then the values are automatically chosen.
compute.hessian
logical, TRUE or FALSE (default). If TRUE then the Hessian is computed numerically using the optimHess function.
lambda.initial
NULL (default) or initial value(s) of the recursion for lambda or log-volatility. If NULL then the values are chosen automatically.
c.code
logical, TRUE (default) or FALSE. TRUE is faster since it makes use of compiled C-code
logl.penalty
NULL (default) or a numeric value. If NULL then the function chooses the value automatically. Sometimes estimation can result in NA or +/-Inf values, which can be fatal for simulations. The value logl.penalty is the value returned by the log-likelihood fu
verbose
logical, TRUE (default) or FALSE. FALSE provides faster estimation, because less results-output is generated.
aux
NULL (default) or a list, se code. Useful for simulations (speeds them up).
...
further arguments passed to the nlminb function.