This class represents the mean model X_t=mu+e_t with mu~N(mu.mu0,mu.sd^2) and e_t being a nuisance parameter time series
nuisanceModel_mean(mu.mu0 = 0, mu.sd = 10000, prop.scaling = 1)
A priori mean and standard deviation of mu
Scaling parameter for generating Metropolis-Hastings proposals of parameter of interest theta=mu
S3 nuisanceModel
object representing the model parameter theta=mu
of interest, containing the following fields:
Dimension of parameter of interest (here: theta_dim=1
)
Logical; Should the outermost Fourier frequencies be
ignored in the frequency domain representation? (here: excludeBoundary=F
)
Function taking the two arguments data,theta
to compute the nuisance/noise time series e_t from data and parameter
theta of interest. (here: e_t=data-theta)
Function taking the parameters data
(Numeric vector of input data), f
(Numeric Vector of current
spectral density at the Fourier frequencies within the Gibbs sampling algorithm)
and previous_theta
(Previously sampled value of mu) and
returning a new proposal value for mu
Function taking the Numeric Vector data
of input
data as argument to generate an initial value for mu to start an MCMC
algorithm (here: mean(data)
)
Function; Log density of prior of mu (here: log density of N(mu.mu0,mu.sd^2))
The returned object of this function is intended for usage within
gibbs_AR_nuisance, gibbs_NP_nuisance
and gibbs_NPC_nuisance.
The method propose_next_theta
is optimized to be close to the
marginal posterior of mu in the model.
The proposal scaling can be controlled with the parameter prop.scaling
,
where larger values yield a broader (smaller values yield narrower)
proposal distribution.