Learn R Programming

bfw (version 0.4.2)

InverseHDI: Compute Inverse HDI

Description

Compute inverse cumulative density function of the distribution

Usage

InverseHDI(
  beta,
  shape1,
  shape2,
  credible.region = 0.95,
  tolerance = 0.00000001
)

Arguments

beta

density, distribution function, quantile function and random generation for the Beta distribution with parameters shape1 and shape2

shape1

non-negative parameter of the Beta distribution.

shape2

non-negative parameter of the Beta distribution.

credible.region

summarize uncertainty by defining a region of most credible values (e.g., 95 percent of the distribution), Default: 0.95

tolerance

the desired accuracy, Default: 1e-8

Value

Return HDI

Details

values within the HDI have higher probability density than values outside the HDI, and the values inside the HDI have a total probability equal to the credible region (e.g., 95 percent).

See Also

Beta,optimize

Examples

Run this code
# NOT RUN {
InverseHDI( qbeta , 554 , 149 )
# HDIlo HDIhi
# 0.758 0.818
# }

Run the code above in your browser using DataLab