dbgev(y, mu = 1, sigma = 1, xi = 0.3, delta = 2)
pbgev(y, mu = 1, sigma = 1, xi = 0.3, delta = 2)
qbgev(p, mu = 1, sigma = 1, xi = 0.3, delta = 2)
rbgev(n, mu = 1, sigma = 1, xi = 0.3, delta = 2)
Value
dbgev gives the density, pbgev gives the distribution function,
qbgev gives the quantile function, and rbgev generates random
bimodal GEV observations.
Arguments
y
a unidimensional vector containing the points to compute the density (dbgev) or
the probability (pbgev) froma bimodal GEV distribution with parameters
mu, sigma, xi and delta.
p
a unidimensional vector containing the probabilities
used to compute the quantiles
n
an integer describing the number of observations to generate random bimodal
GEV observations
mu
location parameter
sigma
shape parameter
xi
shape parameter
delta
bimodality parameter
Author
tools:::Rd_package_author("bgev")
Maintainer: tools:::Rd_package_maintainer("bgev")
Details
Density, distribution function, quantile function and random generation of
bimodal GEV distribution with location parameter. In addition, maximum likelihood
estimation based on real data is also provided.
References
Otiniano, Cira EG, et al. (2023). A bimodal model for extremes data. Environmental and Ecological Statistics, 1-28. http://dx.doi.org/10.1007/s10651-023-00566-7
# generate 100 values distributed according to a bimodal GEVx = rbgev(50, mu = 0.2, sigma = 1, xi = 0.5, delta = 0.2)
# estimate the bimodal GEV parameters using the generated databgev.mle(x)