# Generate responses from a network of five binary and ordinal variables.
num_variables = 5
num_categories = sample(1:5, size = num_variables, replace = TRUE)
Pairwise = matrix(0, nrow = num_variables, ncol = num_variables)
Pairwise[2, 1] = Pairwise[4, 1] = Pairwise[3, 2] =
Pairwise[5, 2] = Pairwise[5, 4] = .25
Pairwise = Pairwise + t(Pairwise)
Main = matrix(0, nrow = num_variables, ncol = max(num_categories))
x = simulate_mrf(
num_states = 1e3,
num_variables = num_variables,
num_categories = num_categories,
pairwise = Pairwise,
main = Main
)
# Generate responses from a network of 2 ordinal and 3 Blume-Capel variables.
num_variables = 5
num_categories = 4
Pairwise = matrix(0, nrow = num_variables, ncol = num_variables)
Pairwise[2, 1] = Pairwise[4, 1] = Pairwise[3, 2] =
Pairwise[5, 2] = Pairwise[5, 4] = .25
Pairwise = Pairwise + t(Pairwise)
Main = matrix(NA, num_variables, num_categories)
Main[, 1] = -1
Main[, 2] = -1
Main[3, ] = sort(-abs(rnorm(4)), decreasing = TRUE)
Main[5, ] = sort(-abs(rnorm(4)), decreasing = TRUE)
x = simulate_mrf(
num_states = 1e3,
num_variables = num_variables,
num_categories = num_categories,
pairwise = Pairwise,
main = Main,
variable_type = c("b", "b", "o", "b", "o"),
baseline_category = 2
)
Run the code above in your browser using DataLab