Description
dataset for biomarker threshold model (bhm)
Usage
# to generate survival data, use:
surv.gendat(n, c0, beta)
# to generate glm data, use:
glm.gendat(n, c0, beta)
Arguments
c0
cut off point, for example c0 = 0.4
beta
regression coefficient, for example, beta = c(0.3, log(0.5), log(0.25))
Format
The format of the data set for analysis shall be a data frame with a response variable (either a
Surv object for Cox model or a glm response variable object) and at least one dependent variable as
the biomarker variable.Source
prosate dataset can be loaded with 'library(survival)'.Details
data set of prostate cancer in the 'survival' package is used as an example in paper
by Chen, et al. (2014).
References
Chen, B. E., Jiang, W. and Tu, D. (2014). A hierarchical Bayes model for biomarker subset eff
ects in clinical trials. Computational Statistics and Data Analysis. vol 71, page 324-334.
Examples
Run this code#data(data)
## maybe str(data) ; plot(data) ...
c0 = 0.4
b = c(-0.5, 1.5, 1.3)
data = surv.gendat(n=300, c0 = c0, beta = b)
Run the code above in your browser using DataLab