Learn R Programming

bigPLSR (version 0.7.2)

bigPLSR-package: bigPLSR-package

Description

Provides Partial least squares Regression for big data. It allows for missing data in the explanatory variables. Repeated k-fold cross-validation of such models using various criteria. Bootstrap confidence intervals constructions are also available.

Arguments

Author

Maintainer: Frederic Bertrand frederic.bertrand@lecnam.net (ORCID)

Authors:

References

Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical Meetings (JSM 2023), Toronto, ON, Canada.

Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1

See Also

Examples

Run this code
set.seed(123)
X <- matrix(rnorm(60), nrow = 20)
y <- X[, 1] - 0.5 * X[, 2] + rnorm(20, sd = 0.1)
fit <- pls_fit(X, y, ncomp = 2, scores = "r", algorithm = "simpls")
head(pls_predict_response(fit, X, ncomp = 2))

Run the code above in your browser using DataLab