predict.bigglm

0th

Percentile

Predictions from a biglm/bigglm

Computes fitted means and standard errors at new data values after fitting a model with biglm or bigglm.

Keywords
regression
Usage
"predict"(object, newdata, type = c("link", "response"), se.fit = FALSE, make.function = FALSE, ...) "predict"(object, newdata=NULL, se.fit = FALSE, make.function = FALSE, ...)
Arguments
object
fitted model
newdata
data frame with variables for new values
type
link is on the linear predictor scale, response is the response
se.fit
Compute standard errors?
make.function
If TRUE return a prediction function, see Details below
...
not used
Details

When make.function is TRUE, the return value is either a single function that computes the fitted values or a list of two functions that compute the fitted values and standard errors. The input to these functions is the design matrix, without the intercept column. This allows the relatively time-consuming calls to model.frame() and model.matrix() to be avoided.

Value

Either a vector of predicted values or a data frame with predicted values and standard errors.

References

~put references to the literature/web site here ~

See Also

predict.glm,biglm,bigglm

Aliases
  • predict.bigglm
  • predict.biglm
Examples
example(biglm)
predict(a,newdata=trees)
f<-predict(a,make.function=TRUE)
X<- with(trees, cbind(log(Girth),log(Height)))
f(X)
Documentation reproduced from package biglm, version 0.9-1, License: GPL

Community examples

Looks like there are no examples yet.