Learn R Programming

bigpca (version 1.1)

PCA, Transpose and Multicore Functionality for 'big.matrix' Objects

Description

Adds wrappers to add functionality for big.matrix objects (see the bigmemory project). This allows fast scalable principle components analysis (PCA), or singular value decomposition (SVD). There are also functions for transposing, using multicore 'apply' functionality, data importing and for compact display of big.matrix objects. Most functions also work for standard matrices if RAM is sufficient.

Copy Link

Version

Install

install.packages('bigpca')

Monthly Downloads

13

Version

1.1

License

GPL (>= 2)

Maintainer

Nicholas Cooper

Last Published

November 21st, 2017

Functions in bigpca (1.1)

bigpca-package

PCA, Transpose and Multicore Functionality for 'big.matrix' Objects
estimate.eig.vpcs

Estimate the variance percentages for uncalculated eigenvalues
PC.correct

Correct a big.matrix by principle components
big.t

Transpose function for big.matrix objects
big.PCA

PCA/Singular Value Decomposition for big.matrix
clear_active_bms

Function to clear big.matrix objects in the calling environment
big.algebra.install.help

Attempt to install the bigalgebra package
bigpca-internal

Internal bigpca Functions
big.select

Select a subset of a big.matrix
bmcapply

A multicore 'apply' function for big.matrix objects
import.big.data

Load a text file into a big.matrix object
pca.scree.plot

Make scree plots for any PCA
quick.elbow

Quickly estimate the 'elbow' of a scree plot (PCA)
get.big.matrix

Retrieve a big.matrix object
generate.test.matrix

Generate a test matrix of random data
subcor.select

Selection of the most correlated variable subset
subpc.select

Selection of a representative variable subset
quick.pheno.assocs

Quick association tests for phenotype
prv.big.matrix

Tidier display function for big matrix objects
select.least.assoc

Select subset of rows least associated with a categorical variable
svn.bigalgebra.install

Attempt to install the bigalgebra package using SVN
thin

Reduce one dimension of a large matrix in a strategic way
uniform.select

Derive a subset of a large dataset