# NOT RUN {
########## EXAMPLE ##########
# function with four continuous predictors
set.seed(773)
myfun <- function(x1v,x2v,x3v,x4v){
sin(2*pi*x1v) + log(x2v+.1) + x3v*cos(pi*(x4v))
}
x1v <- runif(500)
x2v <- runif(500)
x3v <- runif(500)
x4v <- runif(500)
y <- myfun(x1v,x2v,x3v,x4v) + rnorm(500)
# fit cubic spline model with x3v*x4v interaction and x3v as "cub"
# (includes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v*x4v,type=list(x1v="cub",x2v="cub",x3v="cub",x4v="cub"),nknots=50)
crossprod( myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values )/500
# fit cubic spline model with x3v*x4v interaction and x3v as "cub0"
# (includes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v*x4v,type=list(x1v="cub",x2v="cub",x3v="cub0",x4v="cub"),nknots=50)
crossprod( myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values )/500
# fit model with x3v*x4v interaction treating x3v as parametric effect
# (includes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v*x4v,type=list(x1v="cub",x2v="cub",x3v="prm",x4v="cub"),nknots=50)
crossprod( myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values )/500
# fit cubic spline model with x3v:x4v interaction and x3v as "cub"
# (excludes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="cub",x4v="cub"),nknots=50)
crossprod( myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values )/500
# fit cubic spline model with x3v:x4v interaction and x3v as "cub0"
# (excludes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="cub0",x4v="cub"),nknots=50)
crossprod( myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values )/500
# fit model with x3v:x4v interaction treating x3v as parametric effect
# (excludes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="prm",x4v="cub"),nknots=50)
crossprod( myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values )/500
# }
Run the code above in your browser using DataLab