Learn R Programming

bigutilsr (version 0.3.11)

covrob_ogk: Robust Location and Scatter Estimation - Ortogonalized Gnanadesikan-Kettenring (OGK)

Description

Computes a robust multivariate location and scatter estimate with a high breakdown point, using the pairwise algorithm proposed by Marona and Zamar (2002) which in turn is based on the pairwise robust estimator proposed by Gnanadesikan-Kettenring (1972).

Usage

covrob_ogk(U, niter = 2, beta = 0.9)

dist_ogk(U, niter = 2, beta = 0.9)

Value

covrob_ogk(): list of robust estimates, $cov and $center.

dist_ogk(): vector of robust Mahalanobis (squared) distances.

Arguments

U

A matrix with no missing values and at least 2 columns.

niter

Number of number of iterations for the first step of the algorithm, usually 1 or 2 since iterations beyond the second do not lead to improvement.

beta

Coverage parameter for the final reweighted estimate. Default is 0.9.

References

Maronna, R.A. and Zamar, R.H. (2002) Robust estimates of location and dispersion of high-dimensional datasets; Technometrics 44(4), 307--317.

Yohai, R.A. and Zamar, R.H. (1998) High breakdown point estimates of regression by means of the minimization of efficient scale JASA 86, 403--413.

Gnanadesikan, R. and John R. Kettenring (1972) Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics 28, 81--124.

Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1--47.

See Also

rrcov::CovOgk()

stats::mahalanobis()

Examples

Run this code
X <- readRDS(system.file("testdata", "three-pops.rds", package = "bigutilsr"))
svd <- svds(scale(X), k = 5)

U <- svd$u
dist <- dist_ogk(U)
str(dist)

Run the code above in your browser using DataLab