Creates a single data frame stacking all thresholds from all studies, then
calls lme4::glmer(..., family=binomial(link='probit')) to fit a random-intercept
model:
$$k_{ij} \sim \mathrm{Binomial}\bigl(n_i, \Phi(\alpha_i + \beta\, c_{ij})\bigr),$$
with \(\alpha_i \sim \mathcal{N}(0, \sigma_\alpha^2)\).
Interpreting results: \(\sigma = 1/|\,\beta\,|\), \(\tau^2 = \sigma^2 \times \sigma_\alpha^2\), \(\mu_0 = (\mathrm{Intercept}) \times \sigma\) (if not forced to 0).
estimate_multiThresh_GLMM(data_list, use_lme4 = TRUE)A list with mu0, sigma, tau, method="GLMM_probit".
same structure: n_i, c_ij, p_ij_obs
logical; if TRUE, calls lme4::glmer with a probit link.