Learn R Programming

bin2norm (version 0.1.0)

estimate_multiThresh_MLE: MLE with Numeric Integration (Multiple Thresholds per Study)

Description

Each study \(i\) has thresholds \(\{c_{ij}\}\), each with an observed proportion \(p_{ij}^{obs}\). We assume \(\mu_i \sim \mathcal{N}(\mu_0,\tau^2)\) and \(X_{ij} \sim \mathcal{N}(\mu_i,\sigma^2)\). The log-likelihood integrates out \(\mu_i\) via Gauss-Hermite quadrature.

Usage

estimate_multiThresh_MLE(data_list, gh_points = 20)

Value

A list with mu0, sigma, tau, method="MLE_integration".

Arguments

data_list

A list with:

  • n_i: numeric vector (length I)

  • c_ij: list of length I

  • p_ij_obs: list of length I

gh_points

integer; number of Gauss-Hermite points (default 12).