Each study \(i\) has thresholds \(\{c_{ij}\}\), each with an observed proportion \(p_{ij}^{obs}\). We assume \(\mu_i \sim \mathcal{N}(\mu_0,\tau^2)\) and \(X_{ij} \sim \mathcal{N}(\mu_i,\sigma^2)\). The log-likelihood integrates out \(\mu_i\) via Gauss-Hermite quadrature.
estimate_multiThresh_MLE(data_list, gh_points = 20)A list with mu0, sigma, tau, method="MLE_integration".
A list with:
n_i: numeric vector (length I)
c_ij: list of length I
p_ij_obs: list of length I
integer; number of Gauss-Hermite points (default 12).