Tools for building reinforcement learning (RL) models specifically tailored for Two-Alternative Forced Choice (TAFC) tasks, commonly employed in psychological research. These models build upon the foundational principles of model-free reinforcement learning detailed in Sutton and Barto (2018) <ISBN:9780262039246>. The package allows for the intuitive definition of RL models using simple if-else statements. Our approach to constructing and evaluating these computational models is informed by the guidelines proposed in Wilson & Collins (2019) tools:::Rd_expr_doi("10.7554/eLife.49547"). Example datasets included with the package are sourced from the work of Mason et al. (2024) tools:::Rd_expr_doi("10.3758/s13423-023-02415-x").
Mason_2024_Exp1
:
Experiment 1 of Mason et al. (2024)
Mason_2024_Exp2
:
Experiment 2 of Mason et al. (2024)
run_m
:
Step 1: Building reinforcement learning model
rcv_d
:
Step 2: Generating fake data for parameter and model recovery
fit_p
:
Step 3: Optimizing parameters to fit real data
rpl_e
:
Step 4: Replaying the experiment with optimal parameters
TD
:
TD Model
RSTD
:
RSTD Model
Utility
:
Utility Model
func_gamma
: Utility Function
func_eta
: Learning Rate
func_epsilon
: Exploration Strategy
func_pi
: Upper-Confidence-Bound
func_tau
: Soft-Max
optimize_para
: optimizing free parameters
simulate_list
: simulating fake datasets
recovery_data
: parameter and model recovery
summary.binaryRL
: summary(binaryRL.res)
Maintainer: YuKi hmz1969a@gmail.com (ORCID)
Useful links: